Descriptif
Optical near field brings together the techniques that allow for optical measurements at the nanometric scale (surface imaging, single molecules, surface plasmons polaritons, etc.). The course presents these techniques, with emphasis on both the practical implementation and the theoretical modelization. It gives the state of the art and impact of optics in the context of nanotechnologies.
Objectifs pédagogiques
- To illustrate near-field optical microscopy: principles, issues, current performances.
- To introduce other near field microscopy techniques (atomic force microscopy, scanning tunneling microscopy, electron energy loss spectroscopy), which are basic tools in nanosciences.
- To give an understanding of current trends in nano-optics and plasmonics
Diplôme(s) concerné(s)
- Laser Optique Matière
- Diplôme d'ingénieur de l'Institut d'Optique Théorique et Appliquée
- Quantum, Light, Materials and Nano Sciences
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Quantum, Light, Materials and Nano Sciences
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- Crédits ECTS acquis : 3 ECTS
Le coefficient de l'UE est : 3
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Diplôme d'ingénieur de l'Institut d'Optique Théorique et Appliquée
Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 12)- le rattrapage est obligatoire si :
- Note initiale < 10
- Crédits ECTS acquis : 1.5 ECTS
Le coefficient de l'UE est : 1.5
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Laser Optique Matière
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 3 ECTS
Le coefficient de l'UE est : 3
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
Optical and electronic microscopy techniques
• Electrons and Photons
• Transverse and axial resolutions
• Data acquisition: scanning and multiple detectors
• Description of some systems and performances
Concepts of optical near field: angular spectrum and radiating field
• Plane waves decomposition, propagatives waves and evanescent waves
• Spatial frequencies, uncertainty relation
• Propagation, spatial filtering and diffraction
• Reminder: near field and far field dipolar radiation
• Near field: electrostatic limit
• Link between radiation of point sources and angular spectrum
Introduction to atomic force microscopy (AFM) and scanning tunneling microscopy (STM)
• The instruments : principle of operation.
• Forces at work: nature and magnitude orders. Electron tunneling: physical processes and technological issues
• Applications: from topography to physical measurements
Different approaches in optical near field microscopy (SNOM)
• Optical tunneling effect
• Metallic fibres as nanosources or nanodetectors.
• Probes without aperture
Confining the electromagnetic field at subwavelength scale : surface plasmons and nanoantennas
• Emission and detection by a two-level system in a cavity. Purcell effect. Nanoantennas
• Introduction to surface plasmons. Optical properties of metals.
• Surface plasmon dispersion relations
• Applications : confinment of the fields, emission and detection mediated by surface plasmons
• Imaging surface plasmons.
Detecting surface plasmons with fast electron beams
• Studying optical excitations at the nanometer scale using fast electron beams.
• Electron Energy Loss Spectroscopy (EELS) and the Cathodoluminescence (CL) as tools to investigate surface plasmons..
• Introduction to spectral imaging techniques
• Link with electromagnetic local density of states (EM-LDOS)